Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Flowthrough pretreatment with very dilute acid provides insights into high lignin contribution to biomass recalcitrance.

Identifieur interne : 001874 ( Main/Exploration ); précédent : 001873; suivant : 001875

Flowthrough pretreatment with very dilute acid provides insights into high lignin contribution to biomass recalcitrance.

Auteurs : Samarthya Bhagia [États-Unis] ; Hongjia Li [États-Unis] ; Xiadi Gao [États-Unis] ; Rajeev Kumar [États-Unis] ; Charles E. Wyman [États-Unis]

Source :

RBID : pubmed:27833657

Abstract

BACKGROUND

Flowthrough pretreatment is capable of removing much higher quantities of hemicellulose and lignin from lignocellulosic biomass than batch pretreatment performed at otherwise similar conditions. Comparison of these two pretreatment configurations for sugar yields and lignin removal can provide insights into lignocellulosic biomass deconstruction. Therefore, we applied liquid hot water (LHW) and extremely dilute acid (EDA, 0.05%) flowthrough and batch pretreatments of poplar at two temperatures and the same pretreatment severity for the solids. Composition of solids, sugar mass distribution with pretreatment, sugar yields, and lignin removal from pretreatment and enzymatic hydrolysis were measured.

RESULTS

Flowthrough aqueous pretreatment of poplar showed between 63 and 69% lignin removal at both 140 and 180 °C, while batch pretreatments showed about 20 to 33% lignin removal at similar conditions. Extremely dilute acid slightly enhanced lignin removal from solids with flowthrough pretreatment at both pretreatment temperatures. However, extremely dilute acid batch pretreatment did realize greater than 70% xylan yields largely in the form of monomeric xylose. Close to 100% total sugar yields were measured from LHW and EDA flowthrough pretreatments and one batch EDA pretreatment at 180 °C. The high lignin removal by flowthrough pretreatment enhanced cellulose digestibility compared to batch pretreatment, consistent with lignin being a key contributor to biomass recalcitrance. Furthermore, solids from 180 °C flowthrough pretreatment were much more digestible than solids pretreated at 140 °C despite similar lignin and extensive hemicellulose removal.

CONCLUSIONS

Results with flowthrough pretreatment show that about 65-70% of the lignin is solubilized and removed before it can react further to form low solubility lignin rich fragments that deposit on the biomass surface in batch operations and hinder enzyme action. The leftover 30-35% lignin in poplar was a key player in biomass recalcitrance to enzymatic deconstruction and it might be more difficult to dislodge from biomass with lower temperature of pretreatment. These results also point to the possibility that hemicellulose removal is more important as an indicator of lignin disruption than in playing a direct role in reducing biomass recalcitrance.


DOI: 10.1186/s13068-016-0660-5
PubMed: 27833657
PubMed Central: PMC5103384


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Flowthrough pretreatment with very dilute acid provides insights into high lignin contribution to biomass recalcitrance.</title>
<author>
<name sortKey="Bhagia, Samarthya" sort="Bhagia, Samarthya" uniqKey="Bhagia S" first="Samarthya" last="Bhagia">Samarthya Bhagia</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Li, Hongjia" sort="Li, Hongjia" uniqKey="Li H" first="Hongjia" last="Li">Hongjia Li</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gao, Xiadi" sort="Gao, Xiadi" uniqKey="Gao X" first="Xiadi" last="Gao">Xiadi Gao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Rajeev" sort="Kumar, Rajeev" uniqKey="Kumar R" first="Rajeev" last="Kumar">Rajeev Kumar</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wyman, Charles E" sort="Wyman, Charles E" uniqKey="Wyman C" first="Charles E" last="Wyman">Charles E. Wyman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27833657</idno>
<idno type="pmid">27833657</idno>
<idno type="doi">10.1186/s13068-016-0660-5</idno>
<idno type="pmc">PMC5103384</idno>
<idno type="wicri:Area/Main/Corpus">001560</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001560</idno>
<idno type="wicri:Area/Main/Curation">001560</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001560</idno>
<idno type="wicri:Area/Main/Exploration">001560</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Flowthrough pretreatment with very dilute acid provides insights into high lignin contribution to biomass recalcitrance.</title>
<author>
<name sortKey="Bhagia, Samarthya" sort="Bhagia, Samarthya" uniqKey="Bhagia S" first="Samarthya" last="Bhagia">Samarthya Bhagia</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Li, Hongjia" sort="Li, Hongjia" uniqKey="Li H" first="Hongjia" last="Li">Hongjia Li</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gao, Xiadi" sort="Gao, Xiadi" uniqKey="Gao X" first="Xiadi" last="Gao">Xiadi Gao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Rajeev" sort="Kumar, Rajeev" uniqKey="Kumar R" first="Rajeev" last="Kumar">Rajeev Kumar</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wyman, Charles E" sort="Wyman, Charles E" uniqKey="Wyman C" first="Charles E" last="Wyman">Charles E. Wyman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biotechnology for biofuels</title>
<idno type="ISSN">1754-6834</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Flowthrough pretreatment is capable of removing much higher quantities of hemicellulose and lignin from lignocellulosic biomass than batch pretreatment performed at otherwise similar conditions. Comparison of these two pretreatment configurations for sugar yields and lignin removal can provide insights into lignocellulosic biomass deconstruction. Therefore, we applied liquid hot water (LHW) and extremely dilute acid (EDA, 0.05%) flowthrough and batch pretreatments of poplar at two temperatures and the same pretreatment severity for the solids. Composition of solids, sugar mass distribution with pretreatment, sugar yields, and lignin removal from pretreatment and enzymatic hydrolysis were measured.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Flowthrough aqueous pretreatment of poplar showed between 63 and 69% lignin removal at both 140 and 180 °C, while batch pretreatments showed about 20 to 33% lignin removal at similar conditions. Extremely dilute acid slightly enhanced lignin removal from solids with flowthrough pretreatment at both pretreatment temperatures. However, extremely dilute acid batch pretreatment did realize greater than 70% xylan yields largely in the form of monomeric xylose. Close to 100% total sugar yields were measured from LHW and EDA flowthrough pretreatments and one batch EDA pretreatment at 180 °C. The high lignin removal by flowthrough pretreatment enhanced cellulose digestibility compared to batch pretreatment, consistent with lignin being a key contributor to biomass recalcitrance. Furthermore, solids from 180 °C flowthrough pretreatment were much more digestible than solids pretreated at 140 °C despite similar lignin and extensive hemicellulose removal.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Results with flowthrough pretreatment show that about 65-70% of the lignin is solubilized and removed before it can react further to form low solubility lignin rich fragments that deposit on the biomass surface in batch operations and hinder enzyme action. The leftover 30-35% lignin in poplar was a key player in biomass recalcitrance to enzymatic deconstruction and it might be more difficult to dislodge from biomass with lower temperature of pretreatment. These results also point to the possibility that hemicellulose removal is more important as an indicator of lignin disruption than in playing a direct role in reducing biomass recalcitrance.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">27833657</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1754-6834</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>Biotechnology for biofuels</Title>
<ISOAbbreviation>Biotechnol Biofuels</ISOAbbreviation>
</Journal>
<ArticleTitle>Flowthrough pretreatment with very dilute acid provides insights into high lignin contribution to biomass recalcitrance.</ArticleTitle>
<Pagination>
<MedlinePgn>245</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Flowthrough pretreatment is capable of removing much higher quantities of hemicellulose and lignin from lignocellulosic biomass than batch pretreatment performed at otherwise similar conditions. Comparison of these two pretreatment configurations for sugar yields and lignin removal can provide insights into lignocellulosic biomass deconstruction. Therefore, we applied liquid hot water (LHW) and extremely dilute acid (EDA, 0.05%) flowthrough and batch pretreatments of poplar at two temperatures and the same pretreatment severity for the solids. Composition of solids, sugar mass distribution with pretreatment, sugar yields, and lignin removal from pretreatment and enzymatic hydrolysis were measured.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Flowthrough aqueous pretreatment of poplar showed between 63 and 69% lignin removal at both 140 and 180 °C, while batch pretreatments showed about 20 to 33% lignin removal at similar conditions. Extremely dilute acid slightly enhanced lignin removal from solids with flowthrough pretreatment at both pretreatment temperatures. However, extremely dilute acid batch pretreatment did realize greater than 70% xylan yields largely in the form of monomeric xylose. Close to 100% total sugar yields were measured from LHW and EDA flowthrough pretreatments and one batch EDA pretreatment at 180 °C. The high lignin removal by flowthrough pretreatment enhanced cellulose digestibility compared to batch pretreatment, consistent with lignin being a key contributor to biomass recalcitrance. Furthermore, solids from 180 °C flowthrough pretreatment were much more digestible than solids pretreated at 140 °C despite similar lignin and extensive hemicellulose removal.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Results with flowthrough pretreatment show that about 65-70% of the lignin is solubilized and removed before it can react further to form low solubility lignin rich fragments that deposit on the biomass surface in batch operations and hinder enzyme action. The leftover 30-35% lignin in poplar was a key player in biomass recalcitrance to enzymatic deconstruction and it might be more difficult to dislodge from biomass with lower temperature of pretreatment. These results also point to the possibility that hemicellulose removal is more important as an indicator of lignin disruption than in playing a direct role in reducing biomass recalcitrance.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bhagia</LastName>
<ForeName>Samarthya</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Hongjia</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Xiadi</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kumar</LastName>
<ForeName>Rajeev</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wyman</LastName>
<ForeName>Charles E</ForeName>
<Initials>CE</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA ; Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA ; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>11</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biotechnol Biofuels</MedlineTA>
<NlmUniqueID>101316935</NlmUniqueID>
<ISSNLinking>1754-6834</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Batch</Keyword>
<Keyword MajorTopicYN="N">Dilute acid</Keyword>
<Keyword MajorTopicYN="N">Flowthrough</Keyword>
<Keyword MajorTopicYN="N">Lignocellulosic biomass</Keyword>
<Keyword MajorTopicYN="N">Liquid hot water</Keyword>
<Keyword MajorTopicYN="N">Poplar</Keyword>
<Keyword MajorTopicYN="N">Pretreatment</Keyword>
<Keyword MajorTopicYN="N">Recalcitrance</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>07</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>11</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27833657</ArticleId>
<ArticleId IdType="doi">10.1186/s13068-016-0660-5</ArticleId>
<ArticleId IdType="pii">660</ArticleId>
<ArticleId IdType="pmc">PMC5103384</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biotechnol Biofuels. 2015 Dec 01;8:203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26677398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2004 Spring;113-116:965-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15054245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2005 Dec;96(18):2026-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16112491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2008 Sep;99(13):5756-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18096381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2011 Oct;102(19):9111-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21764298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Apr 1;286(13):11195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21282110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2007 Apr;25(4):153-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17320227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2014 May 23;7:76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24936209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1982 Jun;154(6):550-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24276350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 1999 Nov;39(11):1771-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10533714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):14253-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22893684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1985 Oct;150(1):76-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3843705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2005 Dec;96(18):1967-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16112484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2004 Apr 5;86(1):88-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15007845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2012 Jul 19;5(1):49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22812930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2011 Nov-Dec;29(6):675-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21624451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2005 Dec;96(18):1959-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16112483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2015 Dec 09;8:209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26664502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 1999 Oct 1;15(5):777-793</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10514248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2013 Mar;110(3):737-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23042575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Jul;101(13):4895-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20004094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2001 Spring;91-93:5-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11963878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2005 Apr;96(6):673-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15588770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2004 Spring;113-116:977-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15054246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2007 Nov;98(16):3061-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17141499</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Tennessee</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Bhagia, Samarthya" sort="Bhagia, Samarthya" uniqKey="Bhagia S" first="Samarthya" last="Bhagia">Samarthya Bhagia</name>
</region>
<name sortKey="Gao, Xiadi" sort="Gao, Xiadi" uniqKey="Gao X" first="Xiadi" last="Gao">Xiadi Gao</name>
<name sortKey="Kumar, Rajeev" sort="Kumar, Rajeev" uniqKey="Kumar R" first="Rajeev" last="Kumar">Rajeev Kumar</name>
<name sortKey="Li, Hongjia" sort="Li, Hongjia" uniqKey="Li H" first="Hongjia" last="Li">Hongjia Li</name>
<name sortKey="Wyman, Charles E" sort="Wyman, Charles E" uniqKey="Wyman C" first="Charles E" last="Wyman">Charles E. Wyman</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001874 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001874 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27833657
   |texte=   Flowthrough pretreatment with very dilute acid provides insights into high lignin contribution to biomass recalcitrance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27833657" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020